1970-01-01
有两种方法可用于诊断某种癌症,A方法简单易行,成本低,患者更容易接受,B方法结果可靠,但操作繁琐,患者配合困难。某研究选择了53例待诊断的门诊患者,每个患者分别用A和B两种方法进行诊断(表1),判断两种方法诊断癌症有无差别,A方法是否可以代替B方法。
表1 进口药和国产药治疗效果
之前介绍过成组设计的列联表,它的行变量和列变量代表的是一个事物的两个不同属性,以我们举过的A药和B药治疗急性心肌梗死患者疗效比较为例,例子中行变量“药物”和列变量“转归”是患者的两个不同特征。
但是配对设计的列联表却有些不同,它的行变量和列变量代表的是一个事物的同一属性,只是对这个属性的判断方法不同而已。如表1所示,行和列均指的是患者是否患有癌症,所不同的是一个是A方法,另一个是B方法。这种列联表最大的特点是行和列数目永远都是一样的。此时,再用成组计数资料的χ2检验就不合适了。这里我们就要用到Kappa一致性检验和配对χ2检验(McNemar检验)。
为什么同一配对设计计数资料咋还有两种检验方法呢?其实这两种方法各有侧重:
1、Kappa检验旨在评价两种方法是否存在一致性;配对χ2检验主要确定两种方法诊断结果是否有差别;
2、Kappa检验会利用列联表的全部数据,而配对χ2检验只利用“不一致“数据,如表1中b和c;
3、Kappa检验可计算Kappa值用于评价一致性大小,而配对χ2检验只能给出两种方法差别是否具有统计学意义的判断。
Kappa值判断标准:
Kappa≥0.75,说明两种方法诊断结果一致性较好;
0.4≤Kappa<0.75,说明两种方法诊断结果一致性一般;
Kappa<0.4,说明两种方法诊断结果一致性较差。
有关具体计算过程,我们这里可以交给计算机统计软件SPSS来完成。
A方法和B方法诊断结果一致性一般(Kappa=0.506,P<0.001); B诊断阳性率为67.9%,明显高于A诊断(50.9%),且差别具有统计学意义(P=0.022)。
PS: R*C配对列联表的χ2检验应用Bowker检验,SPSS的具体操作方法同McNemar检验。
百度浏览 来源 : 医咖会
版权声明:本网站所有注明来源“医微客”的文字、图片和音视频资料,版权均属于医微客所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源:”医微客”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,转载仅作观点分享,版权归原作者所有。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。 本站拥有对此声明的最终解释权。
发表评论
注册或登后即可发表评论
登录注册
全部评论(0)